Cubiertas Y Envolventes En Categorías De Representaciones

Autores del Libro:


Resumen del Libro:


libro Cubiertas Y Envolventes En Categorías De Representaciones

La tesis queda enmarcada en el contexto del álgebra homológica y la teoría de anillos y más concretamente en la teoría de cubiertas y envolventes en categorías de representaciones. La idea de aproximar módulos, tanto por la izquierda como por la derecha, se remonta al año 1953 en el cual Eckman y Schopf prueban que todo módulo admite una aproximacióon minimal a izquierda por un módulo inyectivo, esto es, tiene una envolvente inyectiva. A su vez Bass caracterizó los anillos para los cuales todo módulo se puede aproximar a la derecha de manera minimal: los anillos perfectos. La formulación general de cubiertas y envolventes referidas a una clase arbitraria de módulos es debida a Enochs en el año 1981. Dada una clase F de módulos cerrada bajo isomorfismos, una F -precubierta (o aproximación a derecha) de un módulo M es un morfismo & : F & M de forma que para cualquier otro morfismo & : F &&M con F & F existe un tercer morfismo f : F & F tal que & of = &, esto es, el morfismo canónico Hom(F , F) & Hom(F , M), es sobreyectivo. La F-precubierta se dice que es una F-cubierta (o una aproximación minimal a derecha) cuando para cada g : F & F tal que & o g = & se tiene que g es un automorfismo. El concepto de F -(pre)envolvente se define de manera dual. En el mismo artículo donde aparecen estas definiciones, Enochs formula lo que se conoce como la conjetura de la cubierta plana que afirma que todo m ́odulo admite una cubierta plana, es decir, una cubierta referida a la clase formada por todos los módulos planos . Esta conjetura ha sido resuelta recientemente en 2001 de dos formas distintas. Nuestro primer objetivo en la tesis es desarrollar una teoría general de cubiertas y envolventes en un marco suficientemente amplio como es el de las categorías de Grothendieck sin suficientes proyectivos. Este estudio está motivado porque una de las categorías más importantes en el ámbito de la geometría …


Formatos Disponibles: PDF / EPUB

Opciones de descarga:

Si deseas obtener una copia del libro puedes usar alguna de las siguientes opciones de descarga:

¿Te has leído el Libro? ¿Qué te ha parecido?